Path Planning Optimization for Teaching and Playback Welding Robot

نویسندگان

  • Yuehai Wang
  • Ning Chi
چکیده

Path planning for the industrial robot plays an important role in the intelligent control of robot. Tradition strategies, including model-based methods and human taught based methods, find it is difficult to control manipulator intelligently and optically. Thus, it is hard to ensure the better performance and lower energy consumption even if the same welding task was executed repeatedly. A path planning optimization method was proposed to add learning ability to teaching and playback welding robot. The optimization was divided into the welding points sequence improvement and trajectory improvement, which was done both on-line and off-line. Points sequence optimization was modeled as TSP and was continuously improved by genetic algorithm based strategy, while the trajectory between two welding points was on-line improved by an try-and-error strategy where the robot try different trajectory from time to time so as to search a better plan. Simulation results verified that this control strategy reduced the time and energy cost as compared with the man-made fix-order sequence. Our method prevents the robot from the computation-intensive model-based control, and offers a convenient way for self-improvement on the basis of human teaching.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Welding Robot Collision-Free Path Optimization

Reasonable welding path has a significant impact on welding efficiency, and a collision-free path should be considered first in the process of welding robot path planning. The shortest path length is considered as an optimization objective, and obstacle avoidance is considered as the constraint condition in this paper. First, a grid method is used as a modeling method after the optimization obj...

متن کامل

Robot Path Optimization for Spot Welding Applications in Automotive Industry

Preliminary notes The paper discusses the problem of effective motion planning for industrial robots. The first part deals with current method for off-line path planning. In the second part is presented the work done with one of the simulation systems with automatic trajectory generation and off-line programming capability. A spot welding process is involved. The practical application of this s...

متن کامل

Coarse Geometry acquisition of welding parts using a novel cheap depth sensor

We present a human-robot-cooperation welding system, consisting of several phases including a coarse acquisition of the work piece geometry, interactive fine-scanning of welding seam regions and automated optimizing path planning after task specification by the user. The coarse geometry acquisition component is explained in detail showing the feasible application of a novel and cheap 3D-Sensor ...

متن کامل

Study of Evolutionary and Swarm Intelligent Techniques for Soccer Robot Path Planning

Finding an optimal path for a robot in a soccer field involves different parameters such as the positions of the robot, positions of the obstacles, etc. Due to simplicity and smoothness of Ferguson Spline, it has been employed for path planning between arbitrary points on the field in many research teams. In order to optimize the parameters of Ferguson Spline some evolutionary or intelligent al...

متن کامل

Welding Path Planning of welding Robot Based on Improved Ant Colony Algorithm

The basic ant colony algorithm in the welding robot path planning, in the search process, prone to search for too long, low efficiency, easy to fall into the local optimal and other issues. In this paper, the basic ant colony algorithm is improved, and the Adadelta algorithm is introduced. By combining the basic ant colony algorithm and Adadelta algorithm, the probability of selecting the next ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013